

# ATOS ELECTRO-HYDRAULICS



# vane pumps



# **PFE** vane pumps, fixed displacement

Cartridge design with integral hydraulic balancing, high performance, low noise level, high versatility and long service life.

Three basic models in standard execution or high pressure line plus further reduction of noise level.

Mounting according to ISO and SAE standard, full interchangeability of cartridges for maintenance and displacement fittings.

Displacement up to 150 cm<sup>3</sup>/rev, pressure up to 210 and 300 bar.

Following data refer to use with mineral oil, for other fluids information on request.







Size and execution, see table 201 and 202  $\,$ 



PFE-\*2

302 - PFE noise level at 1500 rpm dB(A)





| 201 - Standard | 1    |                  |     |                      |              | 2   |
|----------------|------|------------------|-----|----------------------|--------------|-----|
| Models         | Pmax | Pmax Flow at 150 |     | Power at<br>1500 rpm | Max<br>speed |     |
|                |      | 7                | 140 | and I max            |              |     |
|                | bar  | bar              | bar | kW                   | rpm          |     |
| PFE-31016      | 210  | 23               | 19  | 8,3                  | 2800         | Ī   |
| -31022         | 210  | 30               | 26  | 10,8                 | 2800         | Ī   |
| -31028         | 210  | 40               | 36  | 14                   | 2800         |     |
| -31036         | 210  | 51               | 46  | 18                   | 2800         | Ī   |
| -31044         | 210  | 63               | 58  | 22                   | 2500         | Ī   |
|                |      |                  |     |                      |              | - [ |
| PFE-41045      | 210  | 64               | 60  | 23                   | 2500         |     |
| -41056         | 210  | 80               | 75  | 30                   | 2500         | [   |
| -41070         | 210  | 101              | 95  | 35                   | 2500         | [   |
| -41085         | 210  | 124              | 118 | 43                   | 2000         | [   |
|                |      |                  |     |                      |              | ļ   |
| PFE-51090      | 210  | 128              | 119 | 45                   | 2200         | L   |
| -51110         | 210  | 157              | 147 | 55                   | 2200         | L   |
| -51129         | 210  | 186              | 174 | 65                   | 2200         | [   |
| -51150         | 210  | 215              | 204 | 80                   | 1800         | ſ   |

| 2 - | High | pressure. | low | noise |  |
|-----|------|-----------|-----|-------|--|

Displacement (cm<sup>3</sup>/rev), see table 201 and 202

|         | 202 - High pressure, low noise |      |                        |                      |                      |              |  |  |
|---------|--------------------------------|------|------------------------|----------------------|----------------------|--------------|--|--|
| ĸ<br>ed | Models                         | Pmax | Flow -<br>at 150<br>ar | 1/min<br>0 rpm<br>1d | Power at<br>1500 rpm | Max<br>speed |  |  |
|         |                                |      | 7                      | 140                  | and I max            |              |  |  |
| n       |                                | bar  | bar                    | bar                  | kW                   | rpm          |  |  |
| 0       |                                |      |                        |                      |                      |              |  |  |
| 0       | PFE-32022                      | 300  | 30                     | 26                   | 16                   | 2500         |  |  |
| 0       | -32028                         | 300  | 40                     | 36                   | 20                   | 2500         |  |  |
| 0       | -32036                         | 300  | 51                     | 46                   | 26                   | 2500         |  |  |
| 0       |                                |      |                        |                      |                      |              |  |  |
|         |                                |      |                        |                      |                      |              |  |  |
| 0       | PFE-42045                      | 280  | 64                     | 60                   | 31                   | 2200         |  |  |
| 0       | -42056                         | 280  | 80                     | 75                   | 40                   | 2200         |  |  |
| 0       | -42070                         | 250  | 101                    | 95                   | 42                   | 2200         |  |  |
| 0       | -42085                         | 210  | 124                    | 118                  | 43                   | 2000         |  |  |
| _       |                                |      |                        |                      |                      |              |  |  |
| 0       | PFE-52090                      | 250  | 128                    | 119                  | 54                   | 2000         |  |  |
| 0       | -52110                         | 250  | 157                    | 147                  | 66                   | 2000         |  |  |
| 0       | -52129                         | 250  | 186                    | 174                  | 78                   | 2000         |  |  |
| 0       | -52150                         | 210  | 215                    | 204                  | 80                   | 1800         |  |  |
|         |                                |      |                        |                      |                      |              |  |  |

Different cartridge displacements available on request

# • DOUBLE VANE PUMPS - 2 cartridges into one body with common inlet port

Size: 43 or 54



070/022 1 4 Shaft, rotation (1) and ports arrangement

Displacement of first and second PFE cartridge (cm<sup>3</sup>/rev) - see above

203

| Models      | Composition                                    | Pmax<br>bar | Flow<br>1/min | Power<br>kW | Max<br>speed<br>rpm |
|-------------|------------------------------------------------|-------------|---------------|-------------|---------------------|
| PFED-43 *** | whatever combination of PFE-41, -31 cartridges | 210         | DEE ( ) L     |             |                     |
| PFED-54 *** | whatever combination of PFE-51, -41 cartridges | 210         | see PFE table |             |                     |



PFEL



# NOTES

- (1) Options on the code
   (1) Shaft SAE-ISO 3019 (for other versions, see CDT catalogue or Atos internet site): for PFE: 1 = standard keyed; 3 = high torque keyed; for PVC: 1 = standard keyed;
   1.2 Rotation, viewing pump at shaft end: D = clockwise, S = counterclockwise
   1.3 Ports arrangement (P = outlet, T = inlet), see table at side

т



1**D** 

### **PVP** axial piston pumps, variable displacement

Axial piston pumps for industrial applications and high pressure operation with low noise level and long service life.

The variable displacement is obtained through the inclination of the swashing plate by means of an electrohydraulically driven servopiston.

A line of hydraulic and electrohydraulic controls leads to energy-saving installation up to the SLER version which performs full proportional controls of flow and pressure in high dynamics.

pumps



303 - PVPC axial piston pumps



| 304 - | PVPC nois | se level a | at 1500 rj | pm  |     |
|-------|-----------|------------|------------|-----|-----|
| dB(A) |           |            |            |     |     |
| 70    |           |            |            |     |     |
| 60    |           |            |            |     |     |
| 50    |           |            |            |     |     |
|       | 10        | 00         | 200        | 300 | bar |





# • AXIAL PISTON PUMPS - variable displacement

| PVPC                                            | -          | SLER                  |     | 4           |      | 046        | 1    | 11              |
|-------------------------------------------------|------------|-----------------------|-----|-------------|------|------------|------|-----------------|
| Axial piston variable<br>displacement, C series | ]          |                       |     |             |      |            |      | Shaft, rotation |
| Type of control                                 | -          |                       |     |             |      |            |      |                 |
| C, R = manual, remote pre                       | ssure co   | mpensator             |     |             |      |            |      |                 |
| CH = manual pressure cor                        | npensato   | or, with venting      |     |             |      |            |      |                 |
| CZ = proportional pressur                       | e compe    | nsator                |     |             |      | Displac    | emen | it (cm³/rev)    |
| L = load sensing (pressure                      | e & flow)  |                       |     |             |      |            |      |                 |
| LW = constant power (med                        | chanical)  |                       |     |             |      |            |      |                 |
| LZQZ = load sensing (pres                       | sure & flo | ow proport. control)  |     |             |      |            |      |                 |
| SL = closed loop proportio                      | nal flow   |                       |     |             |      |            |      |                 |
| SLE = as SL option plus inte                    | eoral ele  | ctronics (2)          |     |             |      |            |      |                 |
| SLER = as SLE option plus                       | sequence   | e module (2)          |     | Size: 3, 4, | 5, s | ee table i | 204  |                 |
| (2) Also available in integ                     | ral digita | al execution (PES, PE | SR) |             |      |            |      |                 |

204

| Models       | Displacement | Max<br>pressure<br>bar |                              | Max<br>pressure<br>bar |    | Max flow at<br>1500 rpm | Power at<br>1500 rpm,<br>max P and Q | Speed<br>ratings |
|--------------|--------------|------------------------|------------------------------|------------------------|----|-------------------------|--------------------------------------|------------------|
|              | cm³/rev      | Pmax                   | $\mathbf{P}_{\mathrm{peak}}$ | 1/min                  | kW | rpm                     |                                      |                  |
| PVPC -*-3029 | 29           | 280                    | 350                          | 42                     | 20 | 600 ÷ 3000              |                                      |                  |
| -*-4046      | 46           | 280                    | 350                          | 67                     | 32 | 600 ÷ 2600              |                                      |                  |
| -*-5073      | 73           | 280                    | 350                          | 106                    | 50 | 600 ÷ 2200              |                                      |                  |

# **PFR** radial piston pumps

Fixed displacement, high pressure pumps for long service life in heavy duty applications. 205

| Models  | Pmax | Flow at<br>1500 rpm<br>250 bar | Power at<br>1500 rpm<br>and Pmax | Max<br>speed | Models  | Pmax | Flow at<br>1500 rpm<br>250 bar | Power at<br>1500 rpm<br>and Pmax | Max<br>speed |
|---------|------|--------------------------------|----------------------------------|--------------|---------|------|--------------------------------|----------------------------------|--------------|
|         | bar  | 1/min                          | kW                               | rpm          |         | bar  | 1/min                          | kW                               | rpm          |
| PFR-202 | 500  | 2,5                            | 2,1                              | 1800         | PFR-518 | 350  | 26,0                           | 15,2                             | 1800         |
| -203    | 500  | 5,0                            | 4,2                              | 1800         | -522    | 350  | 31,5                           | 18,4                             | 1800         |
| PFR-308 | 350  | 12,5                           | 7,5                              | 1800         | -525    | 350  | 37,0                           | 21,6                             | 1800         |
| -311    | 350  | 16,5                           | 10                               | 1800         |         |      |                                |                                  |              |
| -315    | 350  | 21,5                           | 12,5                             | 1800         |         |      |                                |                                  |              |

# PFE, PVP, PFR multiple pumps

Multiple pumps are available by composition of PFE, PFR and PVP pumps.



| PFEX2***, PFEX3***                                                      | double and triple units: whatever combination of PFE pumps             |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| PFEXD***                                                                | triple unit: whatever combination of PFE-5, -4 with PFED               |  |  |  |
| PVP*X2E***                                                              | double unit: whatever combination of PVP with PFE pumps                |  |  |  |
| PFRX2E***, PFRX3E***                                                    | double and triple units: whatever combination of PFR-3, PFR-5 with PFE |  |  |  |
| PFRXD***                                                                | triple unit: whatever combination of PFR-3, -5 with PFED               |  |  |  |
| Composition subject to verification of max terms limit allowed by shaft |                                                                        |  |  |  |



# cylinders & servocylinders



305 - CK cylinders



307 - Options of seals

| Seals | Characteristics               | Curve |
|-------|-------------------------------|-------|
| 1     | High static and dynamic       | C1    |
| 2     | High fluid temperature        | C2    |
| 4     | High speed, up to 4 m/s       | C2    |
| 6/7   | Single effect-pushing/pulling | C2    |
| 8     | Anti-friction                 | C2    |

Press

### 308 - Options of cushioning

| Position     | Adjustable | Fixed |
|--------------|------------|-------|
| Rear         | 1          | Z     |
| Front        | 2          | 8     |
| Front & Rear | 3          | 9     |





# **CK and CC series cylinders**

CK are standard square head cylinders for nominal pressure up to 160 bar (max 250 bar), double acting with dimensions according to ISO 6020/2-91, DIN 24554 and AFNOR NFE 48-016.

CC are round head heavy duty cylinders, for nominal pressure up to 250 bar (max 320 bar), double acting with dimensions according to ISO 6022, DIN 24333, AFNOR-NFE 48-025, Cetop RP73H.

Bore diameters 25 to 400 mm, strokes up to 5 meters; pressure to 320 bar.







NOTES

125

160

200

 NOTES

 (1) Double rod cylinders available: add in the code the second rod diameter.

 (2) Spacer: normally requested for stroke over 1000 mm to increase the rod guide and protect cylinder against overload and premature wear.

 (3) Current options:

 - incorporated ISO/Cetop subplates for assembling of control valves;

 - end-stroke monitoring by inductive proximity switches;

 - rod drain and air bleeds;

 - customized end stroke cushionings, ports, rod end;

 - NIKROM treatment, hardened and tempered steel.

56, 70, 90

70, 90, 110

90, 140

# • ELECTROHYDRAULIC SERVOCYLINDERS

Atos servocylinders feature high dynamic characteristics, they derive from standard cylinders plus low friction execution. These servocylinders may be supplied with potentiometric, inductive or magnetosonic built-in transducer, see on page 17.



# Cylinders electronic catalog

CDC electronic catalog for CK and CC cylinders, is a quick consultation tool designed for a simple and instinctive feeling. It allows:

- the guided selection of the cylinder code;

- the filling of a component list;
- the visualization of the selected cylinder:

drawing can be saved as .DXF file and imported in a CAD system.



# cylinders





quality standards.

**DHI - 0** 

Configuration, see 214

Size and solenoid

DH\*-0 = Size 06 DK\*-1 = Size 10

Spool type (1)

Pmax - bar

213 - Basic data

Nominal flow - 1/min

Electrical power DC

Electrical power AC

Symbol

ZIII

215

Model

Symbols Max flow - 1/min

Pmax - bar

Model

# solenoid valves



309 - DH, DK and DPH solenoid valves











216 - Subplate attachments: ISO 4401











 $\oplus$ Size 32 - Cetop 10

| Size 06 - Cetop 03 | Size 10 - Cetop 05 |
|--------------------|--------------------|
|                    |                    |

Size 16 - Cetop 07

Size 25 - Cetop 08



| - 611  | В | Ā |  |
|--------|---|---|--|
| - 613  | с | В |  |
| -632/2 | F | Е |  |

# • ZERO LEAKAGE DIRECT OPERATED SOLENOID VALVE

Ā

DLOH 3 Poppet type Size 06 (6) Configuration 2 = 2 way P 3 = 3 way C A = open in resting position C = closed in resting positior

Without connector (4)





Atos is a leading international manufacturer of oil-hydraulic solenoid

Atos valves features: shell-moulding castings machined by transfer lines and then cleaned by thermic deburring - interchangeable spools - wet solenoids with manual override, manufactured and tested in-house to Atos

24DC

DKI-1

100

315

120 (\*)

50 W

110 VA

Code

-751/2

-710

-711

-713

-714

Without connector (4)

Voltage supply (5)

X

DHO-0

80

350

210

33 W

solenoids \*O

Ā

A

Ā

В

Е

UX

Options (2)

DHU-0

60

350

210

33 W

Performance for 4 way operation, see curves on diagrams 310, 311

solenoids

\*U

Ā

Ā

\*\*

DKOR-1

120

315

210 (\*)

40 W

Symbol

ÊXIL

MXIHITM

MIIIM

MXIHIIM WILLIA

24DC

w

۲

0

Design number

DKU-1

100

315

160 (\*)

50 W

valves: many millions of Atos valves operate today worldwide.

Flow up to 1000 l/min – Pressure to 350 bar. Standard valves are equipped with solenoids: \*I type suitable for AC and DC supply

DIRECT OPERATED SOLENOID VALVES

63

P. A. B por

(\*) Pressure up to 315 bar allowed if Y port is connected to tank 214 - Basic models DHI, DHU, DHO, DKI, DKU, DKOR

Code

- 631/2

- 610

T port

\*U type for DC supply with improved performance \*O type for DC supply with high performance

1/2

DHI-0

60

350

120

33 W

60 VA

solenoids

\*I

В

R





# directional controls

#### PILOT OPERATED SOLENOID VALVES DPHI - 2 71 24DC \*\* Size and solenoid DPH\*-1 = Size 10 DPH\*-2 = Size 16 DPH\*-3 = Size 25 Design number Voltage supply (5) Without connector (4) DPH\*-6 = Size 32 Options (3) Configuration, see 217 Spool type (1)

#### 217 - Basic data

|   | Model                |                | DPH*-1                                  | DPH*-2 | DPH*-3 | DPH*-6 |
|---|----------------------|----------------|-----------------------------------------|--------|--------|--------|
|   | Nominal flow - 1/min |                | 140                                     | 300    | 650    | 1000   |
| ľ | Bmar har             | P, A, B X port | 350                                     | 350    | 350    | 350    |
|   | rillax = Dai         | T port         | 250                                     | 250    | 250    | 250    |
|   | Electrical power DC  |                | See table 213 - pilot valve DHI/DHU/DHO |        |        |        |

#### 218 - Basic models DPHI, DPHU, DPHO

|        | -     |        |       |
|--------|-------|--------|-------|
| Symbol | Code  | Symbol | Code  |
|        | - 631 |        | -710  |
|        | - 610 |        | - 711 |
|        | - 611 |        | - 713 |
|        |       |        | - 714 |

## SOLENOID VALVES FOR SPECIAL APPLICATIONS

219

| Specification                              | C ode                | Max<br>flow<br>1/min | Pmax<br>bar |
|--------------------------------------------|----------------------|----------------------|-------------|
| Explosion-proof to ATEX CE EX II 2G        | DHA - 0; DLOH-AO     | 70                   | 350         |
| Explosion-proof to UL, Class I, Groups C&D | DHA-0/UL; DLOH-AO/UL | 70                   | 350         |
| Intrinsically safety to ATEX CE EX II 1G   | DHW-0                | 20                   | 210         |
|                                            |                      |                      |             |

Ex-proof and intrisically safe executions are also available for pilot operated constructions. Proportional ex-proof valves with or without electronic transducer - see CDT catalog or Atos Internet site.

### • LEVER & MECHANICAL OPERATED DIRECTIONAL VALVES

| <b>DH</b> - 0                       | 1                       | 1 1                     |
|-------------------------------------|-------------------------|-------------------------|
| Size and solenoid<br>DH-0 = Size 06 | Operation:<br>1 = lever | Configuration and spool |
| DK-1 = Size 10                      | 2 = cam                 |                         |

220 - Basic models - nominal flow and Pmax as solenoid valves, see table 213

| Spring                             | return                             | With detent                        |                           | Symbols       |
|------------------------------------|------------------------------------|------------------------------------|---------------------------|---------------|
| Size 06 - Cetop 03                 | Size 10 - Cetop 05                 | Size 06 - Cetop 03                 | Size 10 - Cetop 05        | see table 214 |
| DH-0131                            | DK-1131                            | DH-0151                            | DK-1151                   |               |
| DH-0110<br>-0111<br>-0113<br>-0114 | DK-1110<br>-1111<br>-1113<br>-1114 | DH-0140<br>-0141<br>-0143<br>-0144 | DK-1140<br>-1141<br>-1144 |               |
| DH-0231/2                          | DK-1231/2                          |                                    |                           |               |

In the table are shown the preferred executions. Other standard configurations are currently available.

# NOTES

- NOTES
  (1) Spools are interchangeable; different configurations are normally available (damped switching, low leakage, specific port connection)
  (2) Options:

  A = solenoid mounted at side of port B (only for single solenoid valves)
  WP = prolonged manual override protected by rubber cap
  L1, L2, L3 = device for controlling the switching times
  F\* = safety options with spool position detector:
  FC = mechanical microswitch
  FI = inductive proximity

  (3) Main options for pilot operated valves:
  H = pilot chokes adjustable control of shifting time
  M = check-valve in P
  S = main spool stroke limiter



312 - DPHI-27 pilot operated solenoid valve











- (4) Electric connectors conform to standard DIN 43650 to be ordered separately: SP-666 = standard, IP 65 SP-669 = with built-in rectifier for AC supply on DC coils. Electronic connectors for higher performances or PLC interfacing, see CDT catalog or Atos Internet site.
  (5) Standard voltages, other voltages available on request: VDC: 6, 12, 14, 24, 28, 48 VRC: 110, 230 0VAC: 110, 230 60 Hz.
  (6) High performances DLOK valves (Size 06) are available on request (Flow up to 24 l/min Pmax 318 bar).



# conventional valves



314 - conventional valves











A full line of pressure, flow and directional controls in different executions: **Pressure controls** 

subplate and threaded mounting – relief, sequence, unloading and reducing.

### Flow controls

pressure compensated, subplate mounting.

### Modular valves

modular mounting - relief, sequence, reducing, check, flow control valves and pressure compensators.

### Check valves

subplate and threaded mounting - direct and pilot operated.

# PRESSURE CONTROLS



221 - In-line model

|     | M          | odel              | Variant wi | th venting (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Size     | Qmax-l/min | Pmax - bar           |
|-----|------------|-------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------------|
|     | ARE-06 (2) | 1                 | -          | - TTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G 1/4"   | 40         | 350, 500             |
| ief | ARE-15 (2) |                   | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G 1/2"   | 75         | 15, 50, 75, 150, 250 |
| Rel | ARAM-20    | │ <sup>¬</sup> ₩₩ | ARAM-20/10 | Ling the second | G 3/4"   | 350        | FO 100 010 2FO       |
|     | ARAM-32    |                   | ARAM-32/10 | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G 1 1/4" | 500        | 50, 100, 210, 350    |

### 222 - Subplate model

|                 | M                                                        | odel                               | Variant wi                                                              | th venting (1) | Size                               | Qmax-l/min                                    | Pmax - bar                                       |
|-----------------|----------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------------|------------------------------------|-----------------------------------------------|--------------------------------------------------|
| ٤f              | AGAM-10                                                  |                                    | AGAM-10/10                                                              | , ¤CCÓ ₩       | 10                                 | 200                                           |                                                  |
| elie            | AGAM-20                                                  | 400                                | AGAM-20/10                                                              |                | 25                                 | 400                                           | 50, 100, 210, 350                                |
| Ř               | AGAM-32                                                  | , International Association (1997) | AGAM-32/10                                                              | ur pyv         | 32                                 | 600                                           |                                                  |
| ing             | AGIU-10                                                  |                                    | AGIU-10/10                                                              | +1             | 10                                 | 100                                           |                                                  |
| oad             | AGIU-20                                                  | ×                                  | AGIU-20/10                                                              | @∔₽₽₽          | 25                                 | 200                                           | 100, 210, 350                                    |
| d'I'            | AGIU-32                                                  | P . T                              | AGIU-32/10                                                              | T* *T          | 32                                 | 300                                           |                                                  |
|                 |                                                          |                                    |                                                                         |                |                                    |                                               |                                                  |
|                 | M                                                        | odel                               | Variant wit                                                             | h check valve  | Size                               | Qmax-l/min                                    | Pmax - bar                                       |
| nce             | M<br>AGIS-10                                             | odel                               | Variant wit<br>AGISR-10                                                 | h check valve  | Size<br>10                         | Qmax-1/min<br>200                             | Pmax - bar                                       |
| nence           | AGIS-10<br>AGIS-20                                       | odel                               | Variant wit<br>AGISR-10<br>AGISR-20                                     | h check valve  | Size<br>10<br>25                   | Qmax-l/min<br>200<br>400                      | Pmax - bar<br>100, 210, 350                      |
| Sequence        | M<br>AGIS-10<br>AGIS-20<br>AGIS-32                       |                                    | Variant wit<br>AGISR-10<br>AGISR-20<br>AGISR-32                         | h check valve  | Size<br>10<br>25<br>32             | Qmax-1/min<br>200<br>400<br>600               | Pmax - bar<br>100, 210, 350                      |
| ing Sequence    | M<br>AGIS-10<br>AGIS-20<br>AGIS-32<br>AGIR-10            |                                    | Variant wit<br>AGISR-10<br>AGISR-20<br>AGISR-32<br>AGIRR-10             | h check valve  | Size<br>10<br>25<br>32<br>10       | Qmax-l/min<br>200<br>400<br>600<br>160        | Pmax - bar<br>100, 210, 350                      |
| ducing Sequence | M<br>AGIS-10<br>AGIS-20<br>AGIS-32<br>AGIR-10<br>AGIR-20 |                                    | Variant wit<br>AGISR-10<br>AGISR-20<br>AGISR-32<br>AGIRR-10<br>AGIRR-20 | h check valve  | Size<br>10<br>25<br>32<br>10<br>25 | Qmax-1/min<br>200<br>400<br>600<br>160<br>300 | Pmax - bar<br>100, 210, 350<br>50, 100, 210, 350 |

#### FLOW CONTROLS, PRESSURE COMPENSATED



| 223     |         |                  |            |         |           |              |            |
|---------|---------|------------------|------------|---------|-----------|--------------|------------|
| 2-way   | models  | Qmax - l/min     | Pmax - bar | 3-way   | models    | Qmax - l/min | Pmax - bar |
| QV-06   |         | 1, 6, 11, 16, 24 | 250        | -       | P. Ju - A | -            | 250        |
| QV-10/2 | ीर्द्धा | 60               | 250        | QV-10/3 |           | 60           | 250        |
| QV-20/2 |         | 160              | 250        | QV-20/3 | 1         | 180          | 250        |

# 224 - Subplate attachments: ISO 6264, 5781, 6263





#### • MODULAR VALVES н **M-0** 12 210 Size: H...0 = Size 06 K...0 = Size 10 JP...2 = Size 16 JP...3 = Size 25 Pressure adjustment, see pressure control at page 10 and/or options (3) Operation, see 225 Function (4) 225 Operation and symbols Size 06 Size 10 Size 16 RELIEF Direct op. Pilot op. Direct op. Pilot op. Pilot op. 35 Qmax-l/min Pmax-bar 350 HMP -011 -012 -013 -014 0 HM-011 -012 -013 -014 KM-011 -012 -013 -014 x х -015 -015 -015 3-way PRESSURE REDUCING 3-way 2-way Pilot op Direct op. Pilot op Direct op. Pilot op Qmax-l/min 50 250 Pmax-bar 210 HG-031 -033 -034 KG -031 -033 -034 x x IPG-211 Pilot op. Pilot op. CHECK-VALVE Direct op. Direct op. Pilot op. Qmax-l/min 160 100 Pmax-bar 350 315 350 ø 凤 HR -012 -013 -014 HR -011 KR-011 KR -012 -013 -014 JPR-212 -213 -214 -016 -016 FLOW CONTROL meter-out meter-in meter-in meter-out meter-out Qmax-l/min 100 160 315 Pmax-bar 315 350 ₽ •2₽ JPQ -212 -213 -214 KQ -022 -023 -024 HQ-012 -013 -014 HQ -022 -023 -024 KQ-012 -013 -014 PRESSURE COMPENSATOR (5) 100 Omax-l/min 50 200 Pmax-bar 350 350 350 HC-011/8 HC-011/30 Z KC-011/30 **JPC-211/30** FAST-SLOW SPEED (\*) meter-out meter-in meter-out meter-in A1 F Qmax-l/min Pmax-bar 250 250 etiten 🛃 DHQ-016 DHQ-013 DHQ-011 DHQ-023 DKQ-016 DKQ-013 DKQ-011 DKQ-023 x

# modular valves



315 - modular valves



316 - DHI-07 + HM-011 + HR-012 + HQ-012



317 - DHO + DHI-07





 CHECK VALVES 226 - In-line model: Pmax 400 bar

|  |  | Model | Threaded ports |  |  |
|--|--|-------|----------------|--|--|
|  |  |       |                |  |  |

(\*) Slow speed with solenoid energized (/O) or de-energized (/C)

|                               | Model                   | Threaded ports                         | Max flow - 1/min     |
|-------------------------------|-------------------------|----------------------------------------|----------------------|
| ahaala aala                   | ADR-06, 10, 15          | G 1/4", G 3/8", G 1/2"                 | 40, 80, 150,         |
| check only                    | ADR-20, 25, 32          | G 3/4", G 1", G 1 1/4"                 | 300, 360, 500        |
| check & pilot reverse opening | ADRL-10, 15, 20, 32     | G 3/8", G 1/2", G 3/4", G 1 1/4"       | 30, 60, 100, 300     |
| throttle with integral check  | AQFR-10, 15, 20, 25, 32 | G 3/8", G 1/2", G 3/4", G 1", G 1 1/4" | 30, 50, 80, 160, 250 |

227 - Subplate model: Pmax 315 bar

|                               | Model            | Size (see tab. 224) | Max flow - 1/min |  |
|-------------------------------|------------------|---------------------|------------------|--|
| check & pilot reverse opening | AGRL-10, 20, 32  | 10.05.20            | 160, 300, 500    |  |
| as above with external drain  | AGRLE-10, 20, 32 | 10, 25, 52          |                  |  |

#### NOTES

- NOTES
   (1) Electrically operated versions are available for AGAM, ARAM and AGIU
   (2) The internal cartridges are also available as separated components for simplifying the installation in the manifolds: CART MAE-16 (for ARE-15).
   (3) V = handwheel for pressure control valves.
   2 = cracking pressure spring value (bar) for check-valves; available springs: 2, 4, 8 bar instead of 1 bar standard spring.
   G = micrometric adjustment for flow control valves;
   D = KR-012, -013, -014 only: pre-opening of poppet.

- (4) Suffixes indicate ports of subplate where valve operation is effective
- Suffixes indicate ports of subplate where valve operation is effective 011 = on P port; 012 = on A and B port; 013 = on A port only; 014 = on B port only; 015 = only for relief valves, on A and B port with crossed discharge; 016 = on T port only; 022, 023, 024 = only for flow controls, as 012, 013, 014 but control of flow entering the actuator; 031, 033, 034 = only for pressure reducing controls, as 011, 013, 014; Option /8 = fixed @p (8 bar); option /30 = adjustable @p (5 35 bar).
- (5)



# cartridge valves



318 - cartridges









#### NOTES

- carringe courses and a second secon

Cartridge valves are located in ISO standard cavities on functional blocks having proper hydraulic connections.

They are composed by a poppet or spool cartridge and by a functional cover that retains the cartridge and provides internal hydraulic piloting. Pressure, flow and directional controls with on-off or proportional execution according to the modular composition of functional covers. ISO sizes: 16, 25, 32, 40, 50, 63, 80.

Flow up to 5000 l/min, pressure up to 350 bar.

16

# CARTRIDGE ELEMENTS

SC LI LI = ISO 7368 Size (1): NG 16, 25, 32, 40, 50

1 Spring type (2) Cartridge type

228 - Qmax at 2p = 6 bar

| Size                | NG 16    | NG 25 | NG 32 | NG 40 | NG 50 |
|---------------------|----------|-------|-------|-------|-------|
| Pressure control    | 200      | 400   | 600   | 1200  | 2000  |
| Flow control        | 60 - 180 | 400   | 600   | 1200  | 2000  |
| Directional control | 180      | 400   | 600   | 1200  | 2000  |
| Check control       | 180      | 400   | 600   | 1200  | 2000  |

32

229 - Cartridges (3)

| Control (4)                           |   | Area ratio | Model         | Notes            |
|---------------------------------------|---|------------|---------------|------------------|
| Directional and check                 | n | 1:1,1      | SC LI -**-32* |                  |
| Directional and check                 | n | 1:2        | SC LI -**-33* |                  |
| Programs and 2 way componenter        |   | 1.1        | SC LI -**-31* |                  |
| riessure and 5-way compensator        |   | 1.1        | SC LI -**-36* | Smooth operation |
| Programs and direction normally on on | 0 | 1.11       | SC LI -**-62* |                  |
| Pressure and direction normany open   | ٢ | 1.1,1      | SC LI -**-63* | Smooth operation |
| Pressure and direction normally open  | G | 1:1        | SC LI -**-37* |                  |

### • FUNCTIONAL COVERS



230 - Typical functions of covers (3)



86 © 2003. Dynamatic Technologies Limited



# proportional controls

Proportional valves modulate hydraulic or motion parameters according to electronic reference signals.

Atos, a leader in pioneering electrohydraulics, offers today one of the most advanced lines of proportional valves which allow similar or better performances in comparison with servovalves whilst maintaining the typical benefits of proportional electrohydraulics: less sensitivity, coarser filtration requirements, intrinsic stability, easier servicing and lower cost.

The wide range of Atos proportionals is equipped by exclusive solenoids in the following versions: (-AES) ₽∰∰

ZO-AE; ZOR-AE

ZO-TE; ZOR-TE

easier set-up

As ZO-A plus integral electronic

As ZO-T plus integral analog or

digital (S) electronic driver, in

closed loop, preset to ensure valveto-valve interchangeability and

(-TES) hman

driver, analog or digital (S)



ZO-A; ZOR-A

Efficient open loop solenoids, 35 W, designed for direct-acting valves ISO/Cetop 03 and 05 respectively



#### ZO-T; ZOR-T

Closed loop solenoids with integral electronic transducer to feedback the spool position, featuring high performances



**ZO-LE** 

closed loop



For high-performance 2-stage

valves, with analog or digital (S)

electronic driver preset in double



#### ZA-T (ZA-A)

Explosion-proof safety solenoids classified according to Cenelec or UL standards in closed loop (ZA-T) or in open loop (ZA-A) execution

231 - Typical characteristics of Atos proportional directional valves

| Size                                                                                                                          |                                | Valve<br>version   | 06                    | 10                     | 16                       | 25                       |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|-----------------------|------------------------|--------------------------|--------------------------|
|                                                                                                                               | Hysteresis                     | -A, -AE<br>-T, -TE | 5%<br>0,1%            | 5%<br>0,1%             | 5%<br>0,1%               | 5%<br>0,1%               |
|                                                                                                                               | Response time stroke 0-100%    | -A, -AE<br>-T, -TE | 2030 msec<br>815 msec | 2540 msec<br>1020 msec | 50 70 msec<br>20 35 msec | 60 80 msec<br>25 45 msec |
|                                                                                                                               | Pressure gain *40,*60 versions | -A, -AE<br>-T, -TE | 25%                   | 25%                    | 36%                      | 36%                      |
| $\begin{array}{l} \mbox{Frequency response } \pm 100\% \\ \mbox{at -3dB, } 90^{\circ} \mbox{ phase lag } \pm 5\% \end{array}$ |                                | -T, -TE            | @ 50 Hz<br>@130 Hz    | @ 40 Hz<br>@100 Hz     | @30 Hz<br>@80 Hz         | @25 Hz<br>@70 Hz         |







319 - proportional valves





| w       | = DC power                     |
|---------|--------------------------------|
| S       | = reference signals            |
| Z-A, -T | = valves respectively in -A or |
|         | configuration                  |
| E       | = electronic driver            |
| m       |                                |

-т

T-0

| т   | = valve transducer  |
|-----|---------------------|
| T-O | = system transducer |
| 0   | = actuation avatom  |

PID = axis controller

CLOSED LOOP



### GENERAL INFORMATION

- Valves operation is optimized by Atos electronic drivers with factory preset calibration.
- Digital electronics are provided with serial or fieldbus (Can-bus, Profibus)
- connections. Simple adjustments at start up may be Simple adjustments at start up may be required for -A, -T valves, no further adjustments are required for AE(S), -TE(S) and LE(S) valves. Recommended fluid contamination according to ISO 18/15, absolute filtration  $10 \,\mu$ ,  $\beta 10 \,$  G/T5.



# proportional controls



320 - proportional valves













# NOTES

- NOTES
  (1) Pmax 350 bar, 315 bar for size 10.
  (2) 0 = zero overlapping; 1 = positive; 3 = P positive, A, B, T negative
  (3) Regulation options according to table 232 and 233:
  L = linear; S = progressive; T = linear with double hydraulic gain;
  D = as S but A, B flow paths have ratio 1:2.
  Other spools configuration are available on request
  (4) The 7-pins connector, in plastic (SP-ZH-7P) or metallic (SP-ZM-7P) execution, must be ordered separately.

| DLK                   | ZOR – | - TE - | 1 | 40 |   |
|-----------------------|-------|--------|---|----|---|
| Model, size and       |       |        |   |    | ſ |
| ISO/Cetop subplate    |       |        |   |    |   |
| mounting (1)          |       |        |   |    |   |
| DH, DLH = Size 06     |       |        |   |    |   |
| DK, DLK = Size 10     |       |        |   |    |   |
| DP = Size 10, 16, 25  |       |        |   |    |   |
|                       |       |        |   |    |   |
| Solenoid type ZO, ZOR |       |        |   |    | L |

PROPORTIONAL DIRECTIONAL VALVES

- Execution according to use: A =without integral transducer AE = as A with integral electronics AES = as A with digital integral electronics T = with integral electronics TES = as T with digital integral electronics L = with two integral position transducers L = as L with two integral electronics EE = as L with integral electronics EE = as L with integral electronics AES = as L with digital integral electronics



| $ \begin{array}{ c c c c c c c c c } Symbols & Size & Models & Execution & So(3) $ | 232 - DIRECT OPERA        | <b>TE</b> | D V. | ALVES        |             |                    |               |                                |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------|--------------|-------------|--------------------|---------------|--------------------------------|-----|-----|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Symbols                   |           | Size | Models       | Exec        | ution<br><b>-T</b> | Spools<br>(3) | Flow-l/min<br>at 6p bar<br>(5) |     |     |
| $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |           |      |              | -AE<br>-AES | -TE<br>-TES        |               | 30                             | 70  | Max |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A B                       |           |      |              |             |                    | L13           | 4,5                            | 7   | 18  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | *40       |      |              |             |                    | L33           | 9                              | 14  | 32  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рт / Ф                    |           | 06   | DLHZO-*-040  | x           | I                  | L53           | 18                             | 28  | 50  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |           |      | (6)          |             |                    | L73           | 27                             | 40  | 70  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | *40       |      |              |             |                    | <b>T</b> 73   | 27                             | 40  | 70  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P T / b                   |           |      |              |             |                    | L33           | 40                             | 60  | 90  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A B                       |           | 10   | DLKZOR-*-140 | x           | I                  | L73           | 60                             | 100 | 160 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | *71       |      | (6)          |             |                    | <b>T</b> 73   | 60                             | 100 | 160 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a \p + / b                |           |      |              | _           | _                  | <b>S</b> 3    | 30                             | 45  | 60  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |           |      | DHZO-*- 071  | I           | I                  | <b>S</b> 5    | 50                             | 70  | 85  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |           | 06   | 073          | I           | I                  | Ll            | 8                              | 12  | 18  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĺ <u>Ҳ└₳ţŗŢĬŤŧ</u> ĬŹţĘ8ű | *73       |      | (7) 051      | I           | I                  | L3            | 30                             | 45  | 60  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |           |      | 053          | I           | I                  | L5            | 50                             | 70  | 85  |
| Miniput         Miniput         S1         DKZOR-*.171         I         I         S3         80         120         140           10         173         I         I         S5         130         170         180           10         151         I         I         LS         80         120         140           10         151         I         I         LS         80         120         140           10         151         I         I         LS         130         170         180           10         151         I         I         LS         130         170         180           10         153         I         I         D5         130         170         180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>A B</u>                |           |      |              |             |                    | D5            | 50                             | 70  | 85  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | *51       |      | DKZOR-*- 171 | т           | т                  | S3            | 80                             | 120 | 140 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>р т</u> / b            | 51        |      | 172          | 1           | -                  | <b>S</b> 5    | 130                            | 170 | 180 |
| 151         I         I         I         L5         130         170         180           Mr         1         1         1         1         1         1         10         170         180           Mr         1         1         1         1         10         170         180           Mr         1         1         1         10         170         180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |           | 10   | 0 151        | 1           | 1                  | L3            | 80                             | 120 | 140 |
| /W <u>T   T #1 × F</u> 22 *53 153 I I I D5 130 170 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |           |      |              | I           | I                  | L5            | 130                            | 170 | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | *53       |      | 153          | I           | I                  | D5            | 130                            | 170 | 180 |

### 233 - PILOT OPERATED VALVES (8)

| Symbols |     |    | Models      |                   | Execution<br>(8) | Ţ           | Spools<br>(3) | Flow-l/min<br>at 6p bar<br>(5) |     | uin<br>ir |
|---------|-----|----|-------------|-------------------|------------------|-------------|---------------|--------------------------------|-----|-----------|
|         |     |    |             | -A<br>-AE<br>-AES | -T<br>-TE        | -LE<br>-LES |               | 10                             | 30  | Max       |
|         |     |    | DPZO-*- 17* | I                 | I                | I           |               | 00                             | 100 | 170       |
|         | *71 |    | 15*         | I                 | I                | I           | 35            | 80                             | 135 | 110       |
|         |     | 10 | 160         | x                 | x                | т           | L5            | 80                             | 135 | 170       |
|         | *73 |    | 170         | v                 | v                | -           | D5            | 80                             | 135 | 170       |
| P_T /   |     |    | 110         | ~                 | •                | T           |               |                                |     |           |
|         |     |    | DPZO-*- 27* | I                 | I                | I           | S3            | 130                            | 220 | 440       |
|         | *51 |    | 25*         | I                 | I                | I           | <b>S</b> 5    | 200                            | 340 | 770       |
|         |     | 16 | 260         | x                 | x                | I           | L5            | 200                            | 340 | 770       |
|         | *53 |    | 270         | x                 | x                | I           | D5            | 200                            | 340 | 770       |
|         |     |    | DPZO-*- 37* | I                 | I                | I           |               |                                |     |           |
|         | *60 |    | 35*         | г                 | I                | I           | \$5           | 360                            | 620 | 1450      |
| A B     |     | 25 | 200         |                   |                  | _           | L5            | 390                            | 680 | 1450      |
|         | *70 |    | 360         | x                 | x                | 1           | D5            | 360                            | 620 | 1450      |
|         |     |    | 370         | x                 | x                | I           |               |                                |     |           |

(5) Flows for max electronic signal at total 6p across the valve (each flow path accounting for about a hall).
(6) Fail safe configuration can be:

with port P closed, ports A, B, T connected to tank (first sketch)
spools code L13, L33, L53, L73, T73
with all ports closed (second sketch)
spools code L11, L31, L51, L71, T71;
(7) DHZO-A-060 version, single solenoid with 2 external position, spring offset and zero overlapping is available on request.



### PROPORTIONAL THROTTLE CARTRIDGES, PRESSURE OR FLOW CONTROL VALVES

| RZM                                                                                                                                           | 0 | - | A                                              | -                                                              | 10                                                                                | 7                                                                             | 350                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type:<br>RZM, AGMZ= relief - subplate mounting<br>LIMZ = relief - cartridge<br>HZM = relief - modular mounting                                |   |   |                                                |                                                                |                                                                                   |                                                                               | Max pressure or<br>variants for operation                                                                                                                                                                                                  |
| RZG, AGRZ = reducing - subplate mount.                                                                                                        |   |   |                                                |                                                                | Size                                                                              |                                                                               |                                                                                                                                                                                                                                            |
| LIRZ = reducing - cartridge<br>HZG, KZG = reducing - modular mounting<br>QV*Z = compensated - subplate mounting<br>LIQZ = throttle cartridges |   |   | Exe<br>A<br>AE<br>AES<br>L<br>LE<br>LES<br>TER | cution<br>= fc<br>in<br>= a<br>= w<br>= a<br>= a<br>= a<br>= w | n acco<br>or ope<br>s A wi<br>s A wi<br>vith do<br>s L plu<br>s L plu<br>vith int | rdin<br>n or<br>l trai<br>th int<br>th di<br>uble<br>us int<br>us int<br>egra | g to use:<br>closed loop control, without<br>nsducer<br>tegral electronics (not for QVMZO)<br>gital integral electronics<br>integral position transducer<br>tegral electronics<br>tegral digital electronics<br>in pressure transducer and |
| Soleroid type ZO_ZOR                                                                                                                          |   |   | TER                                            | S = 1                                                          | rith int                                                                          | egra                                                                          | al pressure transducer and digital                                                                                                                                                                                                         |

# 234 - PRESSURE CONTROLS - Relief and reducing - Pmax 315 bar

| Symbols | Size | Models       | Ez | Execution   |      | Max<br>flow<br>1/min | Symbols                                       | Size | Models       | Ex | ecuti       | on            | Max<br>flow<br>1/min |
|---------|------|--------------|----|-------------|------|----------------------|-----------------------------------------------|------|--------------|----|-------------|---------------|----------------------|
|         |      | Relief       | -A | -AE<br>-AES | -TER |                      |                                               |      | Reducing     | -А | -AE<br>-AES | -TER<br>-TERS |                      |
|         | 06   | RZMO-*- 010  | I  | I           | I    | 6                    |                                               | 1    | RZGO-* - 010 | I  | I           | I             | 12                   |
|         | 00   | - 030        | Ι  | I           | I    | 40                   | ci,                                           |      | - 033        | Ι  | I           | I             | 40                   |
|         | 06   | HZMO-*- 030  | I  | х           | x    | 40                   |                                               | 06   | HZGO-* - 031 | I  | х           | x             | 40                   |
|         |      |              |    |             |      |                      |                                               | 10   | KZGO-* - 031 | I  | x           | x             | 100                  |
|         | 10   | AGMZO-* - 10 | I  | I           | I    | 200                  |                                               | 10   | AGRZO-* - 10 | I  | I           | I             | 160                  |
|         | 25   | - 20         | Ι  | I           | I    | 400                  |                                               | 25   | - 20         | Ι  | I           | I             | 300                  |
|         | 32   | - 32         | I  | I           | I    | 600                  | The second as                                 |      |              |    |             |               |                      |
|         | NG16 | LIMZO-* -1   | I  | I           | I    | 200                  | • + + <b>•</b> •••••••••••••••••••••••••••••• | NG16 | LIRZO-* -1   | I  | I           | I             | 160                  |
|         | NG25 | -2           | I  | I           | I    | 400                  |                                               | NG25 | -2           | I  | I           | I             | 320                  |
|         | NG32 | -3           | I  | I           | I    | 750                  |                                               | NG32 | -3           | I  | I           | I             | 600                  |

# 235 - FLOW CONTROLS, pressure compensated - Two or three ways - Pmax 250 bar, 210 for QVHZO and QVKZOR

| Symbols | Size | Models        | Execution         |                | Max<br>flow<br>1/min | Symbols            | Size | Models        | Ex | ecuti       | on                | Max<br>flow<br>l/min |
|---------|------|---------------|-------------------|----------------|----------------------|--------------------|------|---------------|----|-------------|-------------------|----------------------|
|         |      | 2-way valves  | -A<br>-AE<br>-AES | T<br>TE<br>TES |                      |                    |      | 3-way valves  | -А | -AE<br>-AES | -T<br>-TE<br>-TES |                      |
| *1ी     | 06   | QVHZO-*- 06   | I                 | I              | 3,5-45               | भौ                 | 06   | QVHZO-*- 06   | Ι  | I           | I                 | 3,5-45               |
| - The   | 10   | QVKZOR-*-10   | I                 | I              | 65-90                | ~{ <b>ii</b>       | 10   | QVKZOR-*-10   | Ι  | I           | I                 | 65-90                |
| 200     | 10   | QVZO-* - 10/2 | I                 | x              | 60                   | à la chuir an thai | 10   | QVZO-* - 10/3 | I  | I           | х                 | 70                   |
| L L     | 16   | - 20/2        | I                 | x              | 135                  | L Ch               | 16   | - 20/3        | I  | I           | x                 | 150                  |
|         |      |               |                   |                |                      |                    | 16   | QVMZO-*-20/3  | Ι  | х           | х                 | 170                  |
|         |      |               |                   |                |                      | <b>G</b>           | 25   | - 32/3        | I  | х           | x                 | 280                  |
|         |      |               |                   |                |                      | Li Çi              |      |               |    |             |                   |                      |

# 236 - THROTTLE CARTRIDGES (9) - Two or three way - Pmax 315 bar

| S   | ymbols  | Size | Models<br>(10)<br><b>2-way</b> valves | Exec<br>-T<br>-TE<br>-TES | ution<br>-L<br>-LE<br>-LES | Max<br>flow<br>l/min<br>at >p<br>5 bar | Symbols  | Size | Models<br>(10)<br><b>3-way</b> valves | -T<br>-TE<br>-TES | ution<br>-L<br>-LE<br>-LES | Max<br>flow<br>l/min<br>at >p<br>5 bar |
|-----|---------|------|---------------------------------------|---------------------------|----------------------------|----------------------------------------|----------|------|---------------------------------------|-------------------|----------------------------|----------------------------------------|
|     |         |      |                                       |                           |                            |                                        |          |      |                                       |                   |                            |                                        |
| 200 |         | NG16 | LIQZO-*-162L4                         | I                         | I                          | 250                                    |          |      |                                       |                   |                            |                                        |
| L.  |         | NG25 | -252L4                                | I                         | I                          | 500                                    |          | NG25 | LIQZO-* -253L4                        | х                 | I                          | 185                                    |
| L   | IQZO-T* | NG32 | -32214                                | I                         | I                          | 800                                    | -        | NG32 | -323L4                                | х                 | I                          | 330                                    |
|     | de.     | NG40 | -402L4                                | I                         | I                          | 1200                                   | U070-L*3 | NG40 | -403L4                                | х                 | I                          | 450                                    |
| H   | -       | NG50 | -502L4                                | I                         | I                          | 2000                                   |          | NG50 | -503L4                                | x                 | I                          | 780                                    |
| LI  | QZO-L*2 |      |                                       |                           |                            |                                        |          |      |                                       |                   |                            |                                        |

#### NOTES

- (8) On pilot operated valves DPZO, the code -T, -TE, means one integral transducer on the main spool while the code -L, -LE, -LES means two integral transducers on the main and pilot spools (high dynamics versions).
  (9) Codes refer to cartridge plus functional cover.
  (10) Sizes up to NG63 and NG60 are available on request.
  (11) Option /B is available, with solenoid/transducer/electronics mounted at opposite side of the body.

# proportionals



321 - proportional cartridge















# electronics



322 - electronics



Atos electronics includes analog and digital drivers which supply proportional valves with a proper PWM current to align valve regulation to the reference signal.

Atos electronics has a CE marking qualifying the conformity to the EMC -Electromagnetic Compatibility European Directive.

### 237 - PLUG-IN, UNDECAL, EUROCARD DRIVERS

| Models          | For valves<br>with                          | Execution<br>(1) | Max power<br>supply<br>(2) | Driver<br>response   | Reference<br>signals<br>(3) (4) |
|-----------------|---------------------------------------------|------------------|----------------------------|----------------------|---------------------------------|
| E-MI-AC-01F (5) |                                             | I                | 40W                        | normal               | C, (Ā)                          |
| E-BM-AC-01F     | l Solenoid ZO(R)-A                          | В                | 50W                        | fast                 | V, C                            |
| E-ME-AC-01F     |                                             | E                | 50W                        | fast                 | V, C, (Ā)                       |
| E-ME-T-01H      | H 1 Solenoid ZO(R)-T E                      |                  | 50W                        | high performance     | V, C, (Ā)                       |
| E-ME-L-01H      | 1 Solenoid ZO(R)-T plus separate transducer | E                | 50W                        | high performance     | V, C, (Ā)                       |
| E-BM-AC-05F     | 2 Salaanida ZO(B) A                         | В                | 50W                        | fast                 | v                               |
| E-ME-AC-05F     | 2 Soleholds 20(R)-A                         | E                | 50W                        | fast                 | V, C, (Ā)                       |
| E-ME-T-05H      | 2 Solenoids: ZO(R)-T + ZO(R)-A              | E                | 50W                        | 50W high performance |                                 |

#### INTEGRAL ANALOGIC OR DIGITAL DRIVERS

The integral electronics, factory preset, ensure fine functionality plus valve-to-valve interchangeability and simplifies installation wiring and system set-up. 238 - Analog executions

| Models                                     | For valves<br>with                                     | Execution<br>(1) | Max power<br>supply<br>(2) | Driver<br>response | Reference<br>signals<br>(3) (4) |
|--------------------------------------------|--------------------------------------------------------|------------------|----------------------------|--------------------|---------------------------------|
| E-RI-AE-01F                                | l Solenoid ZO(R)-A                                     | X                | 50 W                       | fast               | C, (Ā)                          |
| E-RI-AE-05F                                | RI-AE-05F 2 Solenoid ZO(R)-A                           |                  | 50 W                       | fast               | V, (A)                          |
| E-RI-TE-01H                                | RI-TE-01H 1 Solenoid ZO(R)-T                           |                  | 50W                        | high performance   | V, C, (Ā)                       |
| E-RI-LE-01H                                | -RI-LE-01H l Solenoid ZO(R)-T plus separate transducer |                  | 50W                        | high performance   | V, C, (A)                       |
| E-RI-TE-05H 2 Solenoids: ZO(R)-T + ZO(R)-A |                                                        | X                | 50W                        | high performance   | V, (A)                          |

New digital integral drivers, see page 17, have the same functions, connectors and dimensions of analog drivers, plus adding the typical benefits of digital electronics. Software setting is provided via rear connector.

| i o - Digital executions |                                             |   |                            |                    |  |
|--------------------------|---------------------------------------------|---|----------------------------|--------------------|--|
| Models                   | For valves<br>with                          |   | Max power<br>supply<br>(2) | Driver<br>response |  |
| E-RI-AES-01H             | l Solenoid ZO(R)-A                          | X | 50 W                       | high performance   |  |
| E-RI-AES-05H             | 2 Solenoid ZO(R)-A                          | X | 50 W                       | high performance   |  |
| E-RI-TES-01H             | 1 Solenoid ZO(R)-T                          | X | 50 W                       | high performance   |  |
| E-RI-LES-01H             | 1 Solenoid ZO(R)-T plus separate transducer | X | 50 W                       | high performance   |  |
| E-RI-TES-05H             | 2 Solenoids: ZO(R)-T + ZO(R)-A              | X | 50 W                       | high performance   |  |

| RI-AES-01H | 1 Solenoid ZO(R)-A                          | X | 50 W | high performance | C, (Ā)    |
|------------|---------------------------------------------|---|------|------------------|-----------|
| RI-AES-05H | 2 Solenoid ZO(R)-A                          | X | 50 W | high performance | V, (A)    |
| RI-TES-01H | l Solenoid ZO(R)-T                          | X | 50 W | high performance | V, C, (Ā) |
| RI-LES-01H | 1 Solenoid ZO(R)-T plus separate transducer | Х | 50 W | high performance | V, C, (Å) |
| RI-TES-05H | 2 Solenoids: ZO(R)-T + ZO(R)-A              | X | 50 W | high performance | V, (A)    |
|            |                                             |   |      |                  |           |

## DIGITAL ELECTROHYDRAULICS WITH FIELDBUS INTERFACE

Electrohydraulic systems may be integrated in field communication network, usually called fieldbus, i.e. CAN-Bus, Profibus, etc.

The fieldbus connects valves, pumps, sensors, switches, transducers, motors, actuators and other devices: an advanced solution for modern machines, that allows easier wiring in multi-axis systems plus fault-diagnostics.



### NOTES

323 - E-RI integral driver with 7-poles conn

A = power supply 24 VDC

B = power supply zeroC = signal zero

Execution, Format/Connection:

 E=Plug DIN;
 E=Eurocard.
 B=Fast plug in standard
 X=Sealed box on the valve; IP65.
 Versions in sealed box (E-RP) also available.

 (2) Power supply at 24 VDC ± 10%; E-MI also at 12 VDC ± 10%.

D = input + E = input -F = monitor signal G = earth

- (3) Reference signals: V = ± 5V; ± 10VDC C = 0 ÷ 5V; 0 ÷ 10VDC A = 4 ÷ 20 mA (optional)
  (4) RAMPS, ENABLE, FAULT options: see CDT catalog or Atos Internet Site.
  (5) For double solenoid proportional valves, order two drivers E-MI-AC-01F/7 to be applied on each solenoid of the valve and interconnected by a cable clamp (supplied with driver).

Reference

signals (3)(4)



# innovative solutions

Innovative systems to improve flexibility and performance can be realized today at competitive cost by digital electrohydraulics.

As explanatory application, at side a 6-axis simulator operated by Atos servocylinders with integral digital electronics : a variety of motion cycles can be easily programmed and controlled.

### AXIS CONTROL BY DIGITAL ELECTROHYDRAULICS

New Atos digital electronics can provide the closed-loop control of position, speed and/or force of any electrohydraulic axis, also acting as electronic driver for the proportional valve, with following features:

- motion cycle and hydraulic parameters i.e. bias, scale and ramp, see figures below, are easily set via software by PC or hand-hold terminal;
- direct interfacing with standard transducers: potentiometers, magnetosonics, rotative or linear encoders;
- better performances: hysteresis, response time, linearity;
- compensation of non-linearities, regulation of the dynamic response;
- diagnostics (fault, monitor) and computer assisted maintenance;
- water-proof configuration (IP65).

325 - Parameters setting via software by PC or hand-hold terminal



### DIGITAL SERVOACTUATORS

Atos servoactuators are smart machines' elements ready to use after piping to the hydraulic source and wiring to the electronic system and are composed by:

- a servocylinder with integral position transducer
- b proportional valve
- c integral digital controller
- d electronic feedback signal
- connections to electric power source, electronic signals and fieldbus network.

The motion cycle and the hydraulic functional parameters can be programmed via software at your pleasure.



#### 328 - Servocylinders may be supplied with potentiometric, inductive or magnetosonic built-in transducers

| Code                | CKP                           | CKV                                       | CKF                       | CKM                               |
|---------------------|-------------------------------|-------------------------------------------|---------------------------|-----------------------------------|
| Transduce type      | potentiometric                | inductive                                 | magnetosonic, analog      | magnetosonic                      |
| Linearity           | ± 0,05 %                      | ± 0,05 %                                  | ± 0,02 %                  | ± 0,02 %                          |
| Repeatability       | ± 0,05 %                      | ± 0,05 %                                  | ± 0,001 %                 | ± 0,001 %                         |
| Max velocity        | 0,5 m/s                       | 2 m/s                                     | 2 m/s                     | 2 m/s                             |
| Strokes             | 100 ÷ 900                     | 100 ÷ 1000                                | 100 ÷ 1000                | 100 ÷ 3000                        |
| Interface           | Voltage 0 ÷ 10V               | Voltage: 0 ÷ 10V<br>Current: 4 ÷ 20mA (1) | Voltage 0 (÷ 10V          | Serial SSI<br>an-Bus, Profibus 2) |
| Typical application | Various, compact construction | Simulators, compact construction          | Sawing machines, Various  | Steel plants, Plastics            |
| Working life        | 5x10 <sup>s</sup> cycles      | 30x10 <sup>s</sup> cycles                 | 30x10 <sup>s</sup> cycles | 30x10 <sup>s</sup> cycles         |
| Temperature limits  | -20°C to +75°C                | -30°C to +75°C                            | -40°C to +75°C            | -40°C to +75°C                    |
|                     |                               |                                           |                           |                                   |

The external electronic box (to be ordered separately) provides several analogic output, for further information, please consult our technical office
 Analogic output: 0 ÷ 10V or 4 ÷ 20mA are available on request.

atos A

324 - 6-axis electrohydraulic simulator



326 - integral digital controller



# blocks



329 - blocks

Atos standard & customized blocks integrate the electrohydraulic valves into properly machined manifolds with full assembling and connections. The blocks are tested and preset for integration in the machine and ready to use.

The modular "meccano" conception of Atos valves - cartridge, subplate or screw-in - enables reliable systems to be easily assembled, also helping operation and service in the field.

Atos blocks are:

- tailored to the specific requirements.
- conceived for the optimum systems' performances
- designed and machined using CAD/CAM technology
- $\boldsymbol{\cdot}$  in cast iron, steel or aluminium alloy.

The blocks integrate proportional speedposition control of tools and auxiliary functions.



Customized blocks control clamping and injection phases by proportional valves with optional CAN-Bus interface.



BG certified blocks perform synchronization by proportional valves and provide **CE** marking.



Steel blocks in rugged execution fit ISO/DIN cartridges in on/off and proportional versions.



Electrohydraulic benches fitted with manifold blocks ensure high reliability and performances.



Multiple load-sensing blocks with proportional valves and screw-in compensators control the crane booms.



Standard multi-stations subplates, carrying solenoid valves and modulars, provide easy servicing.



Customized blocks are designed for the best operation of on-road machines.



The proportional valve controls the automatic levelling of the platform. Screw-in cartridges fitted to arrange auxiliary functions.



BG certified blocks control the actuation of the blade plus the pressure setting of holddown cylinders.

